Analysis of a Parabolic Cross-diffusion Semiconductor Model with Electron-hole Scattering

نویسندگان

  • LI CHEN
  • ANSGAR JÜNGEL
چکیده

The global-in-time existence of nonnegative solutions to a parabolic strongly coupled system with mixed Dirichlet-Neumann boundary conditions is shown. The system describes the time evolution of the electron and hole densities in a semiconductor when electron-hole scattering is taken into account. The parabolic equations are coupled to the Poisson equation for the electrostatic potential. Written in the quasi-Fermi potential variables, the diffusion matrix of the parabolic system contains strong cross-diffusion terms and is only positive semi-definite such that the problem is formally of degenerate type. The existence proof is based on the study of a fully discretized version of the system, using a backward Euler scheme and a Galerkin method, on estimates for the free energy, and careful weak compactness arguments. AMS Classification. 35K55, 35D05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Hole Scattering Length Model for the Solution of Charge Transport in Bipolar Transistors

Considering the small warping parabolic heavy hole model with the quasi-elastic approximation in acoustic phonon scattering, it is shown that the hole scattering length is independent of the hole energy. This result now makes it possible to solve the Boltzmann transport equation to obtain a simple analytical solution for the ballistic hole transport in a thin and uniformly doped base of a pnp t...

متن کامل

Classical solutions of drift – diffusion equations for semiconductor devices : the 2 d case

We regard drift–diffusion equations for semiconductor devices in Lebesgue spaces. To that end we reformulate the (generalized) van Roosbroeck system as an evolution equation for the potentials to the driving forces of the currents of electrons and holes. This evolution equation falls into a class of quasi-linear parabolic systems which allow unique, local in time solution in certain Lebesgue sp...

متن کامل

Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene

We investigate the contribution of the low-energy electronic excitations toward the Raman spectrum of bilayer graphene for the incoming photon energy 1 eV. Starting with the four-band tight-binding model, we derive an effective scattering amplitude that can be incorporated into the commonly used two-band approximation. Due to the influence of the high-energy bands, this effective scattering amp...

متن کامل

Exciton-mediated one-phonon resonant Raman scattering from one-dimensional systems

We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional 1D system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile line shapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this for...

متن کامل

Vertical coupling effects and transition energies in multilayer InAs/GaAs quantum dots

We investigate the transition energy of vertically stacked semiconductor quantum dots with a complete threedimensional (3D) model in an external magnetic field. In this study, the model formulation includes: (1) the positiondependent effective mass Hamiltonian in non-parabolic approximation for electrons, (2) the position-dependent effective mass Hamiltonian in parabolic approximation for holes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005